
SOLUTION OF REGULAR. SPARSE TRIANGULAR.

LINEAR SYSTEMS ON VECTOR AND

DISTRIBUTED-MEMORY MULTIPROCESSORS

E. Barszcz ° R. Fatookif V. Venkatakrishnan t S. Weeratunga t

NAS Applied Research Branch

NASA Ames Research Center, Moffett Field, CA 94035

Report l:LNR-93-007, April 1993

Abstract

This paper presents the implementations and results of a model prob-

lem, the Symmetric Successive Over-Relaxation (SSOR) simulated ap-
plication benchmark from the NAS Parallel Benchmark suite for three

di/_erent parallel processors. SSOR is an iterative implicit method that

partitions the left hand side matrix into a lower triangular matrix and an

upper triangular matrix. The machines used are an eight processor Cray

Y-MP, a 32k processor Thinking Machines Corp. CM-2 and a 128 proces-

sor Intel LPSC/860. The primary d_lculty in implementing SSOR on a

parallel machine lles in £md_zg enough parallelism within the triangular

solves to keep a large number of processors active. A data mapping useful
for d_tributed memory arck/tectuzes is presented. The results show that

the eight processor Cray Y-MP has the best performance among the three
m_'.h_les.

*The zuthor k an employee of NASA.

tThe anShor is an employee of Computer Sciences Corp. This work was funded through NASA
contract NAS 2-12961



1 INTRODUCTION

In this paper, implementations and results of a model problem, the Symmetric Succes-

sive Over-Relaxation (SSOR) simulated application benchmark from the NAS Parallel

Benchmark suite [2] are presented for three different parallel processors. For a de-

tailed description of the mathematical definition of the SSOR simulated application

refer to [2]. The machines used are an eight processor Cray Y-MP, a 32k processor

Thinking Machines Corp. CM-2 and a 128 processor Intel iPSC/860. All machines are

located at the Numerical Aerodynamic Simulation (NAS) systems division at NASA
Ames Research Center.

The SSOR simulated application benchmark models one of the solution methods

used in computational fluid dynamics. SSOR is an iterative implicit method that

partitions the left hand side matrix into a lower triangular matrix and an upper

triangular matrix. A steady state solution is found by forming the right hand side

vector, forming and solving the lower triangular system of equations, forming and

solving the upper triangular system of equation and then updating the solution. These

four steps are iterated until convergence. The primary difticulty in implementing

SSOR on a parallel machine lies in finding enough parallelism within the triangular

solves to keep a large number of processors active.

In the remainder of the paper, the model problem is presented and solution algo-

rithms for the triangular solves are reviewed. The Cray Y-MP implementation and

results are also presented. In addition, a data mapping useful for distributed mem-

ory architectures is presented. Finally, the Thinking Machines Corp. CM-2 and Intel

iPSC/860 implementations and results are given.

2 MODEL PROBLEM

The model problem used for this investigation is the Symmetric Successive Over-

Relaxation simulated application benchmark in the NAS Parallel Benchmark suite.

For a detailed description of the mathematical definition refer to [2]. Here we provide

only a brief description of the essential features of the problem for completeness.

We consider the numerical solution of the following system of five second-order,

nonlinear partial differential equations (PDE's):

0U

aT

0E(U) 0F(U) 0G(U)
+ +--

o7 0¢

÷ aT(U,U ) OV(U,U,) OW(U,+ +
o7 0¢

+H(U,U¢,U.,Uc) , (r,_,_,() E D. × D

(2.1)

with the uncoupled Dirichlet boundary conditions:

U = U*(_#, )), (:), (r,_,_/,_') E D_- x OD (2.2)

and initialconditions:

U-- U°(_, r/,¢), (_,r/,¢)E D for7 = O, (2.3)

2



where D _C_ is a bounded domain, OD is its boundary and D, = {0 _< r _< T} .

Here, E, F, G, T, V, W and H are prescribed vector funtions of U, Ue, U n and

U c with five components each. The vector funtions U* and U ° are given and their

exact form can be found in [2].

In this study, we seek a steady-state solution to (2.2) of the form:

U = [u(1) u(=,) u(S) u(4)u(S)]T = U'(_,7/,(), (_,7/,() E D.

To this end, the vector forcing function H is chosen such that the system of POE's

along with its boundary conditions, satisfies the prescribed exact solution U*. The

bounded spatial domain D is specified to be the interior of the unit cube [(0, 1) x

(0,1) x (0, 1)] and its boundary aD, is the surface of the unit cube.

Starting from the initial values U °, we seek some discrete approximation U_ E D

to the steady-state solution U'. This is achieved through the numerical solution of the

nonlinear system of POE's using a time marching scheme and a spatial discretization

procedure based on second-order accurate, centered finite-difference approximations.

The independent temporal variable r is discretized with Ar as the uniform incre-

ment and the discrete approximation of U on D, is denoted by:

u(_) _ u'(_) = u".

Implicit time differencing is achieved through a single-step, two-level, first-order ac-

curate Euler scheme given by:

where,

Au"= A_.a(au-)0r + Ar + O[Ar2]. (2.4)

AU" = U n+l - U".

After (2.4) is linearized using a local Taylor series expansion in time about U n (fol-

lowed by some simplification) the following linear equation for AU" is obtained:

{I- a_[a_)- + a2CN)"_ + aCB)'_+ a:cq)- +a_)-a_ + a:CS)-___]}au- :

+ T)" + a(F + V)" + aCG+ w)-_[a(Ea_ a,7 a( ]+ _H', (2.s)

where A(U), B(U), C(U), N(U), q(u) and S(U) are the (5 x 5) Jacobian matrices

(aE/0U), (aF/aU), (aG/SU), (aT/aU), (av/au) and (aW/0U). Exact forms of

these matrices can be found in [2]. Then the solution at the next time step is given

by:

U "+1 = U" + AU _.

The independent spatial variables (_, _/, () are discretized by covering B (the clo-

sure of D), with a mesh of uniform increments (he, h,, he) in each of the coordinate

directions, Figure 1. The mesh points in the region are identified by the index-triple

(i,j,k), where the indices i E [1, Ne], j E [1, N,] and k e [1, No] correspond to the



I
k

Figure 1: Computational Domain.

discretization of _, 7/ and ¢ coordinates respectively. Then N_, N n and N¢ are the

number of mesh points in _, T/and _ directions respectively and:

h_ = I/(N_- 1); hn = I/(N.- 1); he = ll(Nc - 1).

Also, the discrete approximation of U in (/) x D,) is denoted by:

U(_',d_, _/, ¢) _ U_,[nAT-,(i- 1)h_, (j - 1)hn, (k- i)h¢]-- U_j, h. (2.6)

The spatial derivatives in (2.5) are approximated by the appropriate three-point,

second-order accurate centered finite-difference quotients, based on the wlues of U_,

at mesh points in Dh tA aDh. Details can be found in [2].

In addition, to suppress high-frequency modes and allow the numerical scheme to

converge to a steady state, a Linear fourth-difference dissipation term of the following
form:

4 4 n 4 4 n 4 4 n
-Are[h_D_U +hnD,_U +hcD_U ],

is added to the right hand side of (2.5). Here, • is a specified constant, and

h_D_U _ = _7_A_'¢A_U_j,k", (2.7)

where A_, _7_ are the standard forward and backward difference operators associated

with the _ direction, respectively. Similar equations hold for the _/mad ¢ directions.

At the first two interior mesh points belonging to either end of the computa-

tional domain, the standard five point difference stencil used for the fourth-difference

dissipation term is replaced by one-sided or one-side biased stencils. These modifica-

tions maintain a non-positive definite dissipation matrix for the system of difference

equations [2].

4



The one-sided and one-side biased dissipation stencils for interior grid points near

the boundaries in the _ direction are given by the following equations
at i-2:

4 4 n
h_D_U = U_+:a,_ - 4U_'+Ij, h + 5U_'j,_, (2.8)

and at i=3:

4 4 n
hiD _ U = U_+2j,h - 4U_'+Ij, h + fUn, j, k - 4U__l,j,k, (2.9)

at i =N_-2:

4 4 n
htD_U = -4U_+lj,k + 6U_,j, k - 4U__lj,k + U__2j, k ' (2.10)

and at i = N_- 1:

4 4 n
heDeU = 5U_,k - 4U__,_/, k + U__:,_,k. (2.11)

Similar difference formulas are used in the _ and ¢ directions.

Then, adding the dissipation terms to the right hand side of (2.5) and replacing

the derivative operators by the difference operators D and D 2 yields the linear system
of equations for AU" given by:

{I- Ar[D_(A)" + D_(N)" + D.(B)" + D_(Q)" + De(C)" + D_(S)"]}AU" =

Ar[D((E + T)" + D.(F + V)" + Dc(G + W)"] (2.12)

AI" _ 4 4 n 4 4 4 4 n- [h_D_U + h.D.U _ + h_D_U ] + ArH',

where H* is the appropriately modified vector forcing function to account for the

added fourth-difference dissipation. Also, Dr, and D_ are the standard three-point
central spatial difference operators, defined in Dh. The left hand side discretization

involves a 7-point finite difference stencil, whereas the right hand side discretization

involves a 13-point finite difference stencil, as shown in Figures 2 and 3, respectively.

It should be noted that the structure of these stencils get modified near the boundaries

of the computational domain as a result of the modification to the fourth-difference

dissipation terms.

2.1 STRUCTURE OF THE SYSTEM OF LINEAR EQUATIONS

When difference operators are replaced by their equivalent discrete forms, the follow-

ing equation represents a system of discretized linear equations for [AU"]ij, k, where

i 6 [2, Ne - 1], j E [2, N. - 1] and k E [2, N_ - 1]. Let this system of equations be

denoted by:

JC"AU" = R", (2.13)

where AU and R are each a vector of length N = 5 x (N( -- 2) x (iV.- 2) × (N¢- 2),

obtained by assembling the sub-vectors of length five associated with each internal

mesh point of the grid. /C is a (N x N) sparse matrix, whose elements are (5 x 5) sub-

matrices. The maximum number of non-zeros per row of the matrix is 35 (= 5 × 7),

5



k

I

i-l,j,k

i,j-1 ,k i+1 ,j,k

i,j+l ,k

Figure 2: 7-point finite-difference stencil for left hand side operator.

which is directly related to the 7-point difference stencil used for discretization of the

left hand side of (2.13).

When mesh points are ordered in a systematic manner, the matrix _ assumes

a particular structure. In the present study, the mesh points are assumed to be in

natural or lexicographic ordering: mesh points are numbered sequentially such that

the index in _ direction runs fastest, followed by the index in 7/ direction and then

the index in _ direction. This results in a regular, sparse iN × N) block matrix with

(5 × 5) sub-matrices as elements. The structure of K: for a 3-D, (4 × 4 × 4) regular

mesh is shown in Figure 4. It is clear that _ has a triply nested block tridiagonal

form, and is structurally symmetric, although the matrix itself is non-symmetric.

The matrix K: can be considered as having a sparse, block banded structure, with

seven block-diagonals, each with (5 x 5) sub-matrices as their elements. This is shown

in Figure 4. Let us denote the nodal variables grouped by sub-vectors of length five

and (5 × 5) sub-matrix elements of K:, associated with a mesh point, by using its

index triple (i, j, k) as the subscripts. Then the constituent equation associated with

the mesh point (i, j, h) is given by:

J_j,tAUi,#,h-1+ Bij,hAUij-l,k + Ci,j,kAUi-l,j,k Jr _)i,j,kAUi,j,k

"lLEi,#,kA U i+ l ,#,k "lL _ j,h A U i,j +l ,k "F _ i,#,kA U i,j,k+ l = I_,j,k (2.14)

where, i E [2, Are - 1], j E [2, N n - 1] and/¢ E [2, Arc - 1]. Each of the coei_cients

_(Ui.j,k_l),_(Ui,j_l,k),C(Ui_l,j,k),_(Ui,j,k),_(Ui+l,j,k),_7(Ui,j+l,h) and _(Ui,j,h+l)

is a (5 x 5) sub-matrix, whereas AUIj,I, and P_,£k are sub-vectors of length 5. In

addition, the coefficients satisfy the following conditions near the boundaries of the



k

I

i,j,k+

i,j-2,k +2,j,k

i,j+2,k

i,k-2

Figure 3: 13-point finite-difference stencil for the explicit part.

computational domain:

._qj,i, = 0 for k < 2; B_j,h = 0 for j _ 2; C_,j,h = 0 for i _< 2;

Eij,h = 0 for i _ (N( - 1); -_ij,k - 0 for j _ (N,_ - 1); _i,j,k = 0 for k > (N¢ - 1).

3 SOLUTION OF SPARSE SYSTEM OF EQUATIONS

Since the direct solution of this system of linear system of order N requires a formidable

matrix inversion effort, in terms of both the processing time and storage requirements,

AU" is obtained through the use of an iterative method based on an approximation to

the matrix/C, (2.13). In this study, we use the Symmetric Successive Over-Relaxation

(SSOR) scheme with natural ordering. The matrix JC can be written as the sum of

the matrices D, y and Z;

where,

K" = D" + y" + Z"

= main block-diagonal of/C '=,

= three sub-block diagonals of/C",

Z '_ = three super-block diagonals of _n.

Therefore, D is a block-diagonal matrix, while y and Z are strictly lower and upper

triangular, respectively. Then the point-SSOR iterative scheme can be written as,

[1];

,t'" AU" = R"



||

mmm •
m|| • •e

mm •

• |-% "• ••
• •ml •
• ii °o

in •oo •"" "-'|I °•
• m• °•l,.*

• moo
• o•_ •

|!

I-% •
o•1

• m mJ

"% o• I_. °
i•

°% |:• •
•% °% °_,, •

II

•• * ,_*%
m•

•o

m m

•l

moo•

•m

am•

I O

•moo•

am•

::-.r-,
%, -'-',

• •if o•

ml

•,.:,.',,,.
im
tom

•• •;_,

•o

i

°o•

i

••o

•o

i m• m•

°,., •

in mm•• i
• ml

• "--',

IWnloi m hi(

ii Oi i

i O Jiml[

• •_a

Figure 4: Schematic of matrix _ under natural ordering of mesh points.

where,

= ,,,(2- ÷,,,y')[x+

and w E (0, 2) is the over-relaxation factor, a specified constant. The SSOR algorithm

requires the solution of the following two sparse block lower and upper triangular

linear systems:

[2_ + wY']AU1 = R" (3.15)

[I ÷ _(_)n)-l_,n]_kUn = /_V 1

so that,

U "+x - U" ÷ [1/w(2 -w)IAU".

The solution scheme consists of following computational tasks, per iteration:

a) Formation of the right hand side vector R.

(3.16)

b) Generation of the sparse, lower and upper triangular systems and their inver-
sion.

c) Solution update.

Efficient solution of the sparse triangular systems presents a challenging problem

on vector and highly parallel computers due to the limited degree of concurrency asso-

ciated with the underlying solution algorithms. This is in contrast to the high degree

8



of easilyexploitableconcurrencyavailablewhenforming It, coefficient matrices of the

triangular systems and the solution update. As a result, when mapping the compu-

tation onto distributed memory multiprocessors, one has to find a data partitioning

scheme that does not unduly lower the efficiency or the concurrency associated with

the computation of the vector I1, and at the same time aLlows the optimal concurrent

solution of the triangular systems.

3.1 CONCURRENT ALGORITHMS FOR SPARSE TRIANGULAR LIN-

EAR SYSTEM SOLUTION

In this section, we briefly review the various concurrent algorithms available for the

solution of regular sparse, block lower and upper triangular systems. In the following

discussion, we focus on the solution of sparse, lower triangular systems. Similar

remarks apply to the sparse, upper triangular systems as well.

The constituent equation of the lower triangular system represented by (3.15) at

a mesh point (i, j, k) is given by:

w-4ij,_AUij,/_-I -1"w_ij,kAUid-l,k -1-wCij, hAUi- lj, k q" _)ij,h A Uid, k -- Rid,h,

where, i E [2, N_- l],j E [2, N n - 1] and k E [2, N¢- I]. This system can be solved

by the following weLl-known recursive, sequential algorithm:

Algorithm 3.1 (Sequential Algorithm)

rm for k - 2,... , (N¢ - 1) do

for j : 2,... ,(N n - 1) do

fori- 2,.-.,(N¢- I) do

A Ui,j,k -- _)_,lk [I_ ,_,k -- 0.p(.g_d,/I AUi,_,k_17L_i,j, kA Ui,j-l,k "_-Ci,j,k A Ui-l,j,k )]

enddo i

enddo j
e.nddo k

This algorithm involves first-order linear recurrences (data dependencies) in all

three indices and dearly lacks any concurrency. Also, since the recurrences occur

in all three indices, re-ordering the indices does not alleviate the problem. Partial

concurrency can be achieved by noting that the k-index recurrence refers to the AU-

values on the previous (i,j)-plane. For a given value of the k index, the contributions

to AUid,i, from the previously computed index (k - 1) are accumulated, resulting in

(N¢ - 2)(N,_ - 2) concurrent tasks. Similarly, for given values of indices k and j, one

can proceed to accumulate the contributions to AUij,/_ from an already computed

index (j - 1). This results in (N¢ - 2) concurrent tasks. Finally, AUIj,_, is obtained

by solving the remaining first-order linear recurrence in index i. This results in the

following partially concurrent algorithm:

Algorithm 3.2 (Partially Concurrent Algorithm)

for k = 2,...,(N¢ - 1) do

for j = 2,..., (N n - 1) do (concurrent loop)



-1

i

Figure 5: Schematic of Mesh Diagonals.

for i = 2,..., (N'_ - 1) do (concurrent loop)

AUIj,h =Rid, h -_A/d,hAUid,h_l
enddo i

enddo j

fo, j = 2,... ,(N, - 1) do
for i = 2,..., (N_ - 1) do (concurrent loop)

AUi,j, k = AUi,j, k --WBid,kAUi,j_l,k

enddo i

for i = 2,...,(N¢.- 1) do

enddo i

enddo j

enddp k

Since the first-order recurrence in index i will be executed sequentially, Amdahl's

law predicts the overall performance of this partially concurrent algorithm is likely
to be low.

In the present study, only algorithms that are algebraically equivalent to the

recursive sequential algorithm, Algorithm 3.1, are considered. Consequently, the only

way to extract further concurrency is to exploit the fact that the triangular linear

system is sparse and to solve for a given unknown, it is not necessary to solve for all

the previous lexicographicaUy ordered unknowns.

Based on this observation, concurrency in the execution of recursions over both i

and j indices can be achieved using the mesh-diagonal or the wavefront approach. In

the wavefront approach, for a fixed value of k, unknowns are computed successively

10



along the diagonals of the mesh on (/,])-plane, Figure 5. Also, concurrency for the

recurrence in the k-index isachieved as before. For a fixed value of k, a wavefront is

defined by the set:

W,,- {(i,j)li+j=m}, m-4,5,...,(Ne+ N,7-2).

All the unknowns on a wavefront W,n can be computed concurrently, after allun-

knowns on wavefront W,,-I have been updated. This requires sweeping through all

the mesh diagonals of a (i,j)-plane sequentially,while achieving concurrency within

each wavefront. The number of concurrent tasks within a wavefront is variable and

as a result,the degree of concurrency for this part of the algorithm ranges from a

minimum of one to a maximum of Min(N_ - 2,N n - 2). This leads to the following

concurrent algorithm:

Algorithm 3.3 (Wavefront Algorithm)

definesets W,,,= {(i,j)[i+ j --m},m = 4,5,...,(N¢ + N, - 2)

for k = 2,3,.--,(N¢ - 1) do

for j = 2,3,...,(N,_- 1) do (concurrent loop)

for i = 2, 3,..., (N_ - 1) do (concurrent loop)

AUij, h = P_j,h -w.A_j,kAUij, h-1
enddo i

enddo j

form= 4,5,...,(N¢ + N, 7- 2) do

for (i,j) w,. do (concu,, n :oop),
AUi,j,h = D_h[AUij,h - w(13i,#,j,AUi,#_a,_,+ C_,#,hAUi_a,#,k)]

enddo

enddo m

enddo k

The data dependency in (3.15)issuch that, the solutionfor the unknown AUI,j,h

requires only the knowledge of solutionsAUij,h-1, AUij-I.t, and AU_-I.j,h. There-

fore,as soon as allthe AU values with i + j + k = (m - 1) axe known for a given

value of m, then allAU values with i + j + k = m can be computed concurrently.

This isthe diagonal hyperplane method. A hyperplane H,,,,for a fixed m, isdefined

by the set:

ll,,,={(i,j,k),li+j+k'-m}, m=6,7,"',(Ne+N,7+Nc-3 ). (3.17)

All unknowns belonging to /'/m can be computed concurrently, after all unknowns

belonging to the previous hyperplane, H,,_-I have been computed. As in the wave-

front algorithm, this requires sequential sweeping through all the hyperplanes, while

achieving concurrency within each hyperplane. Again, the number of concurrent

tasks within a hyperplane is variable and consequently, the degree of concurrency for

this algorithm begins with a minimum of one and increases to at most Min{(N_ -

2)(N,- 2), (N,- 2)(No - 2), (N_ - 2)(N_ - 2)) and then reduces back to a minimum

of one. The diagonal hyperplane algorithm can be written as follows:

11



Algorithm 3.4 (Hyperplane Algorithm)

define sets H,,, = {(i,j,k)li + j + k = m},m = 6,7,..., (N_ + N,_ + N¢ - 3)

for m = 6, 7, . . . , ( Ne + Nq + N¢-3) do

for (i,j, k) e do loop)
u,j.k = +B,j_, u,,j_,,h+C,_,j,h j,h)]

enddo

enddo m

It should be noted that in all of the above concurrent algorithms, we are only

changing the order of computation by implicitly re-ordering the unknowns without

changing the results. In essence, the round-off effects are the same as in the original

sequential algorithm and the results axe bitwise identical. However, the order in which

the solution is computed differs from the standard lexicographical ordering given in
Algorithm 3.1.

A higher degree of concurrency for the solution of sparse triangular systems can

be achieved through different orderings of the unknowns. However, such ordering

schemes are known to adversely affect the convergence rate of the underlying iterative

scheme. The impact on the rate of convergence is difficult to study. Whether the

gain in efficiency due to enhanced concurrency can outweigh the loss incurred by a

reduced convergence rate is highly dependent on the nature of the problem being

solved (the eigenspectrum of the matrix) and architectural features of the parallel

computer system. In this study, we do not explore such algorithms.

4 DEFINITIONS

The following terms are used throughout the rest of the paper unless explicitly rede-
fined.

Domain refers to the computational domain. For cubic domains, N is the length

of the axes and the size is specified as (N × N × N). For noncubic domains, N_, Nn,

and N¢ are the lengths of the _, _/, and _ axes respectively and the size is specified

Related to parallel processing, P is the number of processors used, Nl is the

local length of an axis that has been partitioned across P processors, (_), T is the

execution time in seconds, T1 is the execution time in seconds on a single processor,

Tp is the execution time in seconds on P processors, S is the speedup defined as TT--_p,

and e is the efficiency defined as s.

The processing rate (Mflop/s) is calculated by taking the best Cray single proces-

sor version and using the hardware performance monitor to measure the number of

floating point operations and then dividing by the actual execution time in seconds

times one million. This method is independent of machine and number of processors

used: all processing rates use the best single processor Cray Y-MP floating point

operations count irrespective of the number of operations actually performed.

12



H
H

k

i

Figure 6: Schematic of hyperplanes.

5 SHARED MEMORY IMPLEMENTATION

In this section, an implementation of the SSOR simulated application on a vector

shared memory multiprocessor is presented. The machine used is the Cray Y-MP/8

located in the NAS systems division at NASA Ames. Single processor vectorization

and parallelization issues are discussed followed by implementation details and results.

5.1 VECTOKIZATION ISSUES

All the concurrent computations exposed by the partially concurrent algorithm, Al-

gorithm 3.2, wavefront algorithm, Algorithm 3.3, and hyperplane algorithm, Algo-

rithm 3.4, possess both fine grain parallelism involving (5 x 5) matrix-vector oper-

ations as well as regularity in the computations. This makes them amenable for

vectorization. The uni-processor vector implementations of the partially concurrent

algorithm and wavefront algorithm are self-evident and no further discussion is war-

ranted, except for the fact that in the case of the wavefront algorithm, the vector

data access along a wavefront is at a constant stride of (N_ - I) apart and care must

be taken to avoid memory bank conflicts. However, the vector implementation issues

associated with the hyperplane algorithm, especially with regard to the control and

data structures, merit further discussion.

From a geometric point of view, the set of nodes (mesh points) belonging to each

hyperplane lies on a plane askew to all three axes of the computational space Fig-

ure 6. During the solution of the lower triangular linear system, each concurrent

computation occurs entirely within a hyperplane. However, a given hyperplane can-

not be activated until all previous hyperplanes have completed their computation.

13



h

_ _ _f Hm

(i+j+k = const.)

Diagonals
(k = const.)

Figure 7: Mesh Diagonals on a hyperplane.

This results in a sequential traversing through hyperplanes from one corner to the

diametrically opposite corner of the 3-D mesh. Each hyperplane is composed of a set

of mesh diagonals and each of these mesh diagonals in turn consists of nodes whose

k index is the same, see Figure 7. Assuming that all arrays are stored in the stan-

dard Fortran ]exicographical ordering, the stride for accessing data on a given mesh

diagonal is (N_ - I). However, when moving from the last node on the k-th mesh

diagonal to the first node on the (k + 1)-th mesh diagonal, a relatively large jump

in the address space of the vector AU is needed. In addition, the size of this jump
varies with the value of k index.

The non-constant stride data access opens up at least two approaches for organiz-

ing vector-mode computations within a given hyperplane H,_. In the first case, vector

operations can be confined to each of the mesh diagonals, ignoring the concurrency

available across the mesh diagonals on a given hyperplane. This approach yields vec-

tor operations of variable and relatively short length, but with a constant stride of

(N_ - I). The vector lengths encountered would range from a minimum of one to a

maximum of Min{(N_- 2),(N,- 2)}. The number of vector start-ups required is

equal to the number of mesh diagonals on a hyperplane. The relatively short vector

lengths combined with the large number of start-ups required may limit the perfor-

mance of this implementation on vector computers with high nz/218]. However, this

approach may prove attractive on vector processors that lack the hardware necessary

14



to deal with vector memory accessesinvolving indirect addressing.
Becausethe data for all nodeson a given hyperplane H,, cannot be accessed by

a constant vector stride, the second approach involves the use of indirect addressing

to enable vector operations for all nodes on a hyperplane, simultaneously. This re-

salts in a single vector loop for each hyperplane, whose vector length changes as the

hyperplanes are swept from one corner of the mesh to the other. The vector length

ranges from a minimum of 1 to a maximum of Min{(N_ -- 2)(N,_ - 2), (N, - 2)(N¢ -

2),(N c - 2)(N_ - 2)} and then back again to i.

The success of indirect addressing depends on the availability of hardware to

handle indirect addressing efficiently. Its implementation requires the explicit use

of index vectors to link nodes within a hyperplane to the index triple (i,j,k). All

eligible nodes within a given hyperplane are sequentially ordered, beginning with

those on the mesh diagonal corresponding to minimum k index. Along a given mesh

diagonal, numbering begins at the end corresponding to minimum j-index. Based

on this numbering scheme, a set of index vectors is generated, that links a node's

position within the hyperplane it belongs to the index triple (i, j, k). This facilitates

the implementation of the hyperplane algorithm with all the node variables stored

using standard Fortran lexicographic ordering. The indirect addressing of vector U is

needed when generating the elemental sub-matrices of the sparse triangular systems,

while AU is accessed during the solution for the nodal unknowns.

In both of the above approaches, the computation of the right hand side vector

involves no indirect addressing and can be trivially vectorized with vector lengths of

either (N_- 2) or (N, 1 - 2) or (N_ - 2), all involving either unit or constant stride

memory access.

If the nodal data is stored explicitly according to the sequential numbering scheme

within a hyperplane H,,, indirect addressing can be avoided for data belonging to

H,_. However, their corresponding data via those belonging to nodes (i,j,k- 1),

(i,j- 1, k) and (i- 1,j,k), all lying on H,_-I, cannot be accessed with a constant

stride. This is because, in 3-D, node orderings on adjacent hyperplanes are not

compatible. In addition, this storage scheme would require either indirect addressing

during the computation of the right hand side vector or maintaining two copies of

the nodal data, one in the hyperplane ordering and the other in natural ordering,

with indirect addressing for movement of data between the two copies. These factors

make this approach unattractive on the Cray Y-MP, which has excellent hardware

support for accessing data using indirect addressing.

5.2 PARALLELIZATION ISSUES

In this section, issues pertaining to simultaneous vectorization and coarse-grain paral-

lelization of sparse lower and upper triangular solvers on a shared memory multipro-

cessor are considered. The objective is optimum utilization of all processors without

sacrificing vector performance.

Assuming a cubic domain, the average number of concurrent tasks available in

the second part of the wavefront algorithm, Algorithm 3.3, is O(N). This granularity

is insufficient for optimum utilization of the vector pipelines on multiple processors

or to amortize the overhead associated with creation and management of concurrent

15



processes. Therefore the wavefront algorithm will not be considered any further in
this section.

For the hyperplane algorithm, Algorithm 3.4, the average number of concurrent

tasks within a hyperplane is O(N2). This makes the hyperplane algorithm an excel-

lent choice for simultaneous vectorization and coarse-grained parallelization. Again,

there are two approaches for implementation. As mentioned in Section 5.1, restricting

the vectorization on a hyperplane H,_ to mesh diagonals would leave enough concur-

rent tasks available for exploiting coarse grain parallelism across the mesh diagonals

belonging to H,,. However, the task granularity of each mesh diagonal is not a con-

stant. This would require that each mesh diagonal be assigned to the processors in

a self-scheduled manner for effective load balancing. Since the number of mesh diag-

onals on hyperplanes close to the two corners of the 3-D mesh is small, some form

of load imbalance is unavoidable. In addition, as mentioned in Section 5.1, vector

performance for this approach is not optimal.

The second approach to implementing the hyperplane algorithm is based on indi-

rect addressing. With indirect addressing, all nodes within a hyperplane are processed

in single do-loop. Concurrent tasks are formed by partitioning the do-loop into P or

fewer equal-sized blocks and assigning each block to one of the P processors, which

processes its block in vector-mode. This leads to more flexibility in partitioning and

consequently to better load balancing. However, again near the two corners of the

3-D mesh, the number of nodes in a hyperplane is small and this leads to some load
imbalance.

Generation of the coefficient matrices for the triangular systems can be dealt with

in a similar manner. The only remaining steps in the algorithm, computation of the

right hand side vector and the solution update, are trivially parallelized as well as
vectorized.

5.2.1 Y-MP SYSTEM DESCRIPTION

The Cray Y-MP/8 has eight processors, 128 Mwords of main memory, and 6 nanosec-

onds clock cycle. The peak performance of the machine is 2.67 Gflop/s.

5.2.2 Y-MP IMPLEMENTATION DETAILS

The SSOR simulated application is multitasked on the Y-MP by autotasking the

hyperplane algorithm, Algorithm 3.4. Autotasking, or automatic multitasking, is s

technique where the compiling system attempts to detect and exploit parallelism in

a Fortran program [4]. This process is automatic but not all types of parallelism are

detected and programmer intervention is frequently required.

Autotasking works on do-loop boundaries. If there are no data dependencies in a

nested do-loop, autotasking turns the nested loops to a vector inner loop and a parallel

outer loop. With user direction, autotasking can also stripmine a single vectorized do-

loop. Unlike multitasking independent nested loops, stripmining reduces the vector

length of the inner loop and so affects vectorization performance, especially for short
vectors.

16



The SSOlt simulated application has two major parts: the right hand side (RHS)

and the left hand side (LHS). The ltHS is mainly written with triple nested loops

where each loop has length N. This part is highly parallel with no data dependency

in the three directions. The LHS part consists of the formation and solution of sparse

lower and upper triangular matrices. The LHS has double nested loops where the

inner loops are of lengths ranging between one and ]SN_ with an average length of
1
_N and outer loops of length 3N - 2.1 In the LHS, only the inner loops have no
data dependency.

The SSOR simulated application is multitasked by parallelizing the outer loops of

the ltHS and stripmining the inner loops of the LHS. This is similar to the approach

taken by Fatoohi and Yoon [6] in multitasking the INS3D-LU code on the Cray Y-MP.

5.2.3 Y-MP RESULTS

Results are presented for several difl!erent domain sizes with varying numbers of pro-

cessors. Table 1 contains the memory requirements in megabytes, measured execution

time per time step in seconds, speedup, parallel efficiency, and the processing rate

for four domains on P processors of the Cray Y-MP, where P is 1, 2, 4, or 8. The

domains are all cubical with size (N × N × N), where N is 32, 64, 102, or 128. All

timings are measured in a dedicated environment. The required memory is measured

by using the Unix command size, and verified by counting the number of the arrays

in the code. Speedup, parallel efficiency and processing rate are computed as defined
in Section 4.

The single processor results show that the SSOR simulated application has achieved

reasonable performance even for the smallest domain where the inner loops in the

ttHS are of length 32. The SSOR simulated application achieved about 60% of the

peak performance of single processor of the Cray Y-MP. This is because all of the

inner loops are well vectorized, and have reasonable lengths.

Table 2 lists the measured times for the RHS, lower triangular solve, and upper

triangular solve of the SSOR simulated application on the Cray Y-MP. These three

parts account for approximately 99% of the execution time in each time step. Again,
all timings are measured in a dedicated environment.

The parallel efficiency of the RHS and LHS (lower and upper triangular solves)

are given in Table 3. These results show that the parallel efficiency of the algorithm

depends primarily on the parallel efficiency of the LHS since the parallel efficiency

of the RHS changes only slightly with an increase in the domain size. The RHS is

highly parallel and the slight increase in parallel efficiency is due to the increase in

task granularity for larger domains. For small domains, the LHS has many small loops

which are both vectorized and multitasked. For example, the LHS of the (32 × 32 × 32)

domain has inner loops with a maximum length of 675 and an average length of

340. When stripmined across eight processors, the average vector length is 42. This

explains the relative low efficiency for this domain. For larger domains, both the

LHS and RHS perform reasonably well. On the largest domain, the SSOR simulated

1The inner loops access elements within a hyperplane and the outer loops iterate across the

hyperplanem. See Sections 6.1.3 and 6.2.2 for a discussion about the parallelism and efficiency of the
hyperplane algorithm.

17



Domain

size

32 x 32 × 32

64 × 64 × 64

102 x 102 x 102

128 × 128 x 128

iv Memory Time/step speedup Efficiency Performance

(MBytes) (seconds) (%) (Mflop/s)
1 10

2 10

4 10

8 10

1 60

2 60

4 60

8 60

1 214

2 214

4 214

8 214

1 437

2 438

4 438

8 438

0.254

0.147

0.087

0.060

2.115

1.124

0.602

0.345

8.694

4.551

2.356

1.292

17.514

9.074

4.717

2.530

1.73

2.92

4.20

1.88

3.51

6.13

1.91

3.69

6.73

1.93

3.71

6.92

86.4

73.0

52.5

94.1

87.8

76.7

95.6

92.3

84.1

96.5

92.8

86.5

191

329

557

800

202

381

711

1241

206

394

760

1386

204

395

759

1416

Table 1: Performance on the Cray Y-MP

application achieved about 53% of the peak performance using eight processors of the
Cray Y-MP.

6 DISTRIBUTED MEMORY IMPLEMENTATIONS

In thissection,implementations ofthe SSOR simulated applicationon two distributed

memory multiprocessors are presented. The machines used are a Thinking Machine

CM-2 and an InteliPSC/860. Both machines are located in the NAS Systems Divi-

sion at NASA Ames. First,an approach to implementing the hyperplanc algorithm,

Algorithm 3.4,on distributedmemory machines ispresented and discussed.

6.1 HYPERPLANE ALGORITHM FOR DISTRIBUTED MEMORY MUL-
TIPROCESSORS

Of the algorithms presented in Section 3.1, the hyperplane algorithm, Algorithm 3.4,

exhibits the largest amount of concurrency. So, this section discusses one way to

implement the hyperplane algorithm on distributed memory multiprocessors. For

purposes of discussion, it is assumed that (a) an infinite number of processing elements

(PEa) are available,(b) each PE has a microprocessor with cache, (c) each PE has a

large amount of localmemory, (d) PEs are connected in eithera grid or a hypercubc

topology, and (e) communication with an immediate neighbor is less costly than

communication with a neighbor further away.

18



Domain p RHS Lower Upper Time/step
size Time Perc Time Perc Time Perc Time

(sec) (%) (sec) (%) (sec) (%) (sec)
32 x 32 x 32 1 0.070 27.6 0.091 35.8 0.090 35.4 0.254

4 0.020 22.6 0.034 38.4 0.033 38.1 0.087

8 0.010 17.0 0.025 41.3 0.025 40.9 0.060

64 x 64 x 64 1 0.521 24.6 0.785 37.1 0.780 36.9 2.115

4 0.140 23.3 0.228 37.9 0.227 37.7 0.602

8 0.073 21.1 0.135 39.1 0.133 38.6 0.345

102 x 102 x 102 1 2.240 25.8 3.190 36.7 3.160 36.3 8.694

4 0.581 24.7 0.877 37.2 0.871 37.0 2.356

8 0.312 24.1 0.484 37.5 0.481 37.2 1.292

128 x 128 × 128 1 4.280 24.4 6.530 37.3 6.510 37.2 17.514

4 1.129 23.9 1.771 37.6 1.766 37.4 4.717

8 0.584 23.1 0.959 37.9 0.960 37.9 2.530

Table 2: Profile on the Cray Y-MP

Domain size p

32 × 32 × 32 4

8

64 × 64 × 64 4

8

102 × 102 × 102 4

8

128 x 128 × 128 4

8

Table 3: Parallelefficiency

RHS (%) LHS (%)

88.5

85.0

67.7

45.5

Time/step (%

73.0

52.5

93.0 86.0 87.8

89.2 73.0 76.7

96.4 90.8 92.3

89.7 82.3 84.1

94.8

91.6

92.2

84.9

92.8

86.5

of major parts of the code on the Cray Y-MP

19



For distributed memory multiprocessors, an important question is how many pro-

cessors an algorithm can use effectively. Given a cubic domain (N × N × N) and

ignoring boundary conditions, the right hand side calculations (RHS) of (3.15) are

completely parallel and can use O(N s) processors. The left hand side calculations

(LHS) of (3.15) and (3.16) are limited to parallelism within a hyperplane, and so use

at most O(N 2) processors. Therefore, at most O(N=) processors are assumed.

Some desirable features of a parallel implementation of the hyperplane algorithm

are the following:

• O(N=) processors are used effectively.

• Elements of a hyperplane are accessed efficiently.

• Memory requirements of the parallel version are not significantly more than
those of the serial version.

To use O(N=) processors effectively, a one- or two-dimensional partitioning of the

domain is necessary. A three dimensional partitioning of the domain onto O(N 3)

processors where each partition is assigned to a separate processor will never use all

of the processors since the parallelism occurs within hyperplanes. For one dimensional

partitioning of the domain, the wavefront algorithm, Algorithm 3.3, can be used and
so is not considered further.

Examining two dimensional partitionings of the domain, there are three ways to

choose the two axes to partition. In a cubic domain, all three choices are equivalent.

For noncubic domains, the two shortest axes are partitioned. When any hyperplane

is projected onto the surface created by an axis pair, the ratio of the projected hy-

perplane to surface area is greatest for the two shortest axes. This implies a greater

processor utilization if the two shortest axes are partitioned. Besides having the

greatest processor utilization, parallelism within a hyperplane can never exceed the

product of the two smallest dimensions.

Efficient access of elements in a hyperplane is difficult for microprocessors with a

cache; there is a lack of spatial locality. If hyperplane elements are accessed along

diagonals, elements are a large constant stride apart which causes cache misses. In

addition, between the end of one diagonal and the beginning of the next is a large
variable stride.

One possibility to increase data locality is to map hyperplanes into individual

rectangular planes and then partition each rectangular plane across the processors.

This eliminates the cache misses caused by the large stride. However, this approach

"wastes" memory. For a cubic domain, about three times more memory is required

since there are (3A r - 2) hyperplanes and each is mapped to an (N × N) plane. For
large problems, this is untenable.

If the hyperplanes could be packed into rectangular planes that occupy the original

volume, then spatial locality would be enhanced and there would be no memory

overhead. Such a solution is presented next.

2O



l

Figure 8: H,n = 6 hyperplane on (5 x 5 x 5) domain.

6.1.1 SKEW HYPERPLANE MAPPING

The skew hyperplane mapping described below enhances data locality allowing effi-

cient access to hyperplane elements and requires no extra memory. All hyperplanes

are mapped onto planes normal to one of the coordinate axes. No extra memory is

required since the mapped planes occupy the same volume as the original domain. In

an actual parallel implementation, some memory may be required for communication
buffers.

The definition of H,_ given in the hyperplane algorithm does not include the

boundary points. Here, Hm needs to be extended to include boundary points so the

relationship between boundary points and interior points is maintained through the

transformation. Therefore, the m-th hyperplane is defined by the set:

H,,= {(i,j,k),[i+j+k=m}, m=3,4,...,(Ne+N,,+N¢).

where

I<i<N_, I_<j_<N,, andl_<k_<N¢.

Figure 8 shows the H,, = 6 hyperplane on a (5 x 5 x 5) domain.

Given that N¢ > Ne, and N c _> N,, there are at most N_N n points in any

hyperplane. This is seen by projecting the points of the hyperplanes onto the (_, ,/),

(,7, _) and (_, _) planes. If N¢ _> Ne + Nn- 1, the projection onto the (_,,1) plane

fills the entire plane when Ne + N, + 1 < rn _< N¢ + 2, whereas projections of

a hyperplane never completely fill the (,/,_) and (_,_) planes. Therefore, at most

P = NeN,, processors should be used when the _, _/dimensions are partitioned.

To pack hyperplanes into two dimensional planes that occupy the same volume as

the original domain, a one-to-one mapping is required. This is accomplished by the
following mapping:

il : i}

21



j' - j, and

k' = (i + j + k - 3 ) mod N¢ + 1.

Notice that when projecting a hyperplane onto the (_, ?7) plane only the ( coordinate

changes.

To see that the mapping is one-to-one, assume that two distinct points, (il,jl, kl)

and (i,,j,,k2), map to (i',j',k'). Since ix = i, = i' and jl = j2 = j' then

k'= ((i' + j' + kx - 3) rood N¢) + 1 = ((i' + j' + ka - 3) rood N¢) + 1.

Without loss of generality, assume kx < k2, then ka = kl + cN¢ for some integer

constant c > 0. However, this is a contradiction since 1 _< kl, ks _< N¢. Therefore,
the mapping is one-to-one.

In addition, at most three hyperplanes map to any given (_, ?7) plane. Since

3_<m _<
_< 3.,V 

and k' = ((m - 3) raod NO.) + 1, at most three hyperplanes can be mapped to any
_ven k'.

6.1.2 INVERSE MAP FUNCTION

An inverse map function is necessary to determine how close a point is to the boundary

where special processing is required. The ease of the inverse mapping depends upon
whether the hyperplane number rn is known or not. If it is known then

i = i', j = j', and k = rrt- ( i + j ).

If the hyperplane number is not known then the inverse map is not as simple because

of the rood function• The inverse mapping is given by:

• f k'- ((i + j - 2) raod N¢) if k' > (i + j - 2) rood N¢

i = i" J = 3" and k = _ N¢ + k' - ((i + j - 2) mod N¢) if k' <_ (i + j - 2) mod N¢.

6.1.3 DEGREE OF PARALLELISM

Parallelism within a hyperplane is equal to the number of points in the hyperplane.

Below, a general expression for the amount of parallelism in the m-th hyperplane is
presented.

In addition to the assumptions presented in Section 6.1.1, it is assumed that

N¢ > Nn > Are• Then the expression for parallelism in the rrt-th hyperplane is given
by the fo_wing formula:

½(,.- 2)(,. - x)P(H.) - N_N_ + appropriate term(s) from Table 4

½(N -,,,+ +N. -.,+2)

if 3 < rr_-< N_ + 2

+3_< m_<Iv. + + i
if N,_ + N¢ +2_< in< N_+N,_+N(,

where P(H,,,) is the amount of parallelism within the rn-th hyperplane. For hyper-

planes in the range Ne + 3 _< m _< N, + N¢ + 1, the expression for parallelism is

22



Term [ Condition

N_+3 _<m_< N,+2-½CN_+2N_-2= +s)#¢
1

-_(Ne + N,_ -m + I)(N_ + N, -m + 2)

-_(m- N¢- 2)(m- N_- 1)

-_(2.,- #_ - 2#_- 3)Ne
.,v¢+3 <m_< N_+N_+I

IVe+N¢+2 <m< N,,+N_+I

Table 4: Terms used to calculate parallelism for the m-th hyperplane.

32OO

._ 2800 .....

_O 2400-

_ 1600'

12oo

]_ _.

Z 4O0" /
0

0

t--___

32 _ _ 128 1_ 192

Hyperplane Number

Figure 9: Parallelism within hyperplanes for a (64 x 64 x 64) domain.

formed by taking Ne2V, J and adding all appropriate terms from Table 4. Depending

upon the actual dimensions of the domain, some of the terms may not apply.

As an example of using Table 4, let Are = 4, N, 7 = 6 and N¢ = 7. Then for
hyperplane m = 10,

= (4)(6)

= 22

- -_(4 + 6 - 10 + 1)(4 + 6- 10 + 2)

- ½(10-r-2)(10-7-1)

using lines two and three of Table 4.

For a cubic domain (N x N x N) the equations for parallelism reduce to the
following:

½(=- 2)(..- I)
P(H.) - N' -_(2N - m-l- l)(2N - m-l- 2)

-_(,= - N- 2)(., - N - ])
½0N- ,_+ _)O:v- = + _.)

if3_<m_<N+2

ifN+3_<m_<2N+l

if 2N + 2 <_ m <_3N.

These equations axe equivalent to the ones reported in [3] for cubic domains. The

maximum parallelism within any single hyperplane is found to be s 2 t(_N + _) which
matches the value reported in [3].

Itshould be noted that for a cubic domain, no hyperplane can fullyutilizeO(N _)

processors. Figure 9 shows the amount of parallelismwithin each hyperplane for a

23



(64 × 64 x 64) domain. The maximum parallelism is 3072 which is less than 4096

(64').

6.1.4 USING THE SKEW HYPERPLANE MAPPING

Two ways to use the skew hyperplane mapping are to either (i) apply the skew

hyperplane mapping every time step before computing the LHS and then use the

inverse mapping before computing the RHS or (ii) apply the skew hyperplsne mapping

once and operate completely within the transformed domain when computing the

LHS and RHS. Mapping and unmapping the computational domain when the LHS is

computed, will leave the RHS calculation alone to operate on the unmapped domain.

Mapping the domain once at the outset avoids the cost of mapping and unmapping

the domain every time step. Unfortunately, mapping the domain once at the outset

makes the RHS computation more difficult because the original _ boundaries have

become hyperplanes in the mapped domain. However, the penalty for making the

RHS more diffcult may be offset by avoiding the cost of mapping and unmapping

every time step.

For the RHS, 2nd and 4th order differences are computed which require infor-

mation from nearest neighbor and next to nearest neighbor grid points. With a two

dimensional partitioning and the skew hyperplane mapping, all interprocessor com-

munication is nearest neighbor or next to nearest neighbor. All communication will

be nearest neighbor if at least two points in the _ and _ dimensions are assigned to

each processor.

6.2 EFFICIENCY CONSIDERATIONS

In this section,efficiencylimitsof the wavefront algorithm, Algorithm 3.3, using a

one dimensional partitioningand the hyperplane algorithm, Algorithm 3.4,using the

skew hyperplane mapping are examined for (N x N × N) cubic domains. Itisassumed

that communication costs are zero and that boundary elements are included in the

computation and treated as interiorelements.

6.2.1 WAVEFRONT ALGORITHM EFFICIENCY

For the wavefront algorithm, O(N) processors are assumed because mesh diagonals

have O(N) parallelism. Given that the first dimension of the (N × Ar × N) cubic

domain is partitioned using P _< N processors, each subdomain local to a processor

is (Iv × N ×iV),whereN,= IV/P.
Ignoring specialprocessing at the boundaries, execution time on one processor

is assumed to be directlyproportional to the number of grid points,i.e.,Ti o( N s.

Execution time on P processors is proportional to the amount of work done along

the criticalpath. The criticalpath is the longest path of execution and may cross

processor boundaries. For a fixedvalue of/_,work within the plane ispartitionedinto

a completely concurrent part where updates are made from the previous k plane and

a partiallyconcurrent part where updates are done in parallelwithin a mesh diagonal

but the mesh diagonals arc handled scquentiaUy, see Algorithm 3.3. Approximately

24



one fourth of the work within a k plane occurs in the update from the previous plane

and about three fourths when operating on mesh diagonals. So, the execution time

on P processors is approximated by:

where 1 2_N Nt is proportional to the work done to update all points from the previous

k plane and _ N((2N- 1)N_- 2(N_- 1)N_/2 is proportional to the work done on mesh

diagonals within the k plane. The first term in the mesh diagonal work implies there

is always one processor that has a full amount of work, (NIN) grid points, for each of

the (2N - I) mesh diagonals. The last term is a correction that accounts for the time

required for the first processor to F_] and for the last processor to empty. There are

(NI - i) mesh diagonals processed before the first processor becomes full and each

mesh diagonal has an average of _2 grid points. Therefore, speedup is equal to the
following expression:

SW =-
N 3

¼N2NI + SN((2N- 1)NI - 2(NI - 1)Nil2)

4P

7-3/P"

Substituting for the speedup in the formula for efficiency yields:

4P

ew -- 7-s/P
P

4

T-sIP"

(6.18)

This implies, efficiency of the wavefront algorithm when using O(N) processors ap-

proaches -_ for cubic domains. This compares well with results reported in by Green-

baum in [7] where for two dimensional triangular solves, an efficiency of _ is reported.

Here efficiency is greater than ½ because the update using the previous k plane is done

completely in parallel and so raises the efficiency.

6.2.2 HYPERPLANE ALGORITHM EFFICIENCY

For the hyperplane algorithm, O(N 2) processors are assumed since hyperplanes have

at most O(N=) parallelism. Given that the first two dimensions of the __N x N x N)

cubic domain are partitioned using P __ N _ processors in a (v/-P × _/P) processor

grid, each subdomain local to a processor is (Nlx NI x N), where Nz = N/v/-P.

Ignoring special processing at the boundaries, the execution time on one processor

is assumed to be directly proportional to the number of grid points, i.e., TI o_ N a.

Execution time on P processors is proportional to the amount of work done along

the critical path through the hyperplanes which is proportions] to the number of

grid points in the processors along the critical path. So, the execution time on P

processors is approximated by:

Tp o_ (3N- 2)N_ - 2(2N! - 2)N_/2,

25



where (3N - 2) are the number of hyperplanes, N_ is the locM work and the last

term accounts for the fact that not all hyperplanes have N: grid points, (2Nt - 2)

hyperplanes, each with and average of N_/2 points during startup and draining of

the pipeline. Therefore, speedup is equd to the following expression:

N 3

(3N- 2)NI z - 2(2Nz - 2)N_/2

P

3- 2/_"

Substituting for the speedup in the formula for efficiency yields:

P

s-,/j_

P
1

3-2/_'

eH

(6.19)

1
or approximately _. This implies, efficiency of the hyperplane algorithm when using

1 for cubic domains.O( N 2) processors approaches

8.2.3 EFFICIENCY LIMIT COMPARISON

Effdency limits presented in the previous sections, Sections 6.2.1 and 6.2.2, demon-

strate the trade-off between the number of processors and algorithm. The wavefront

algorithm, Algorithm 3.3, has better efficiency than the h_yperplane algorithm, Algo-

rithm 3.4, when the number of processors is less than N. However, when the number

of processors is larger than N, efffciency of the wavefront algorithm decreases rapidly

until the hyperplane algorithm becomes more efficient.

For N _< P _< N 2, the effciencies are

and

4 N
ew--

7 - 3/N P

1
e H --

2/v '
where P is the number of processors, N is one grid dimension, and ew and eu are

efffciencies for the wavefront and diagonal hyperplane algorithms respectively. The
12

cross over point approaches P = TN as N and P approach infinity. Figure 10

demonstrates the cross over of efffciencies on a (64 × 64 × 64) domain. Note that the

cross over point in Figure 10 occurs near 1.61N rather than 1.71N.

All of the efficiency calculations are approximations and communication has not

been taken into account. However, they do indicate that on an ideal parallel machine,

the number of processors and the size of the computational domain must be considered

when selecting an algorithm.

For an actual application, communication costs and other phases of the problem

will change the efffciencies. The RHS calculations are fully parallel and should raise

26



1.0

0.8

_' 0.6 _..-----.__.

"_ \
,,_ 0.4': "_-._.__

0.2

0.0

_ WavGb_mt

0 1 2 3 4

Processors(x64)

Figure 10: Efficiency curves for the wavefront and hyperplane algorithms on a (64 x
64 × 64) domain.

the overall efficiency. On the other hand, if interprocessor communication is consid-

ered, it is expected that both the wavefront and hyperplane efficiencies will be less

than predicted. However, the wavefront efficiency should degrade more than the hy-

perplane efficiency because the surface to volume ratio is worse for one dimensional

partitionings than two dimensional partitionings and communication is proportional
to surface area.

Another phase that has not been considered is the formation of the LHS. For

the hyperplane algorithm, the LHS can be formed in parallel but there might not

be enough memory. The LHS can be formed for the current hyperplane as needed,

implying there will be 3N-2 stages where the LHS is being formed. For the wavefront

algorithm, the LHS can be formed a k plane at a time, implying N stages where the

LHS is being formed. This will make the wavefront implementation more efficient

relative to the hyperplane implementation.

Finally, it should be noted that cubic domains have worse efficiency limits than
noncubic domains.

6.3 CM2 IMPLEMENTATION

The model problem, Symmetric Successive Over-Relaxation simulated application,

has been implemented on the Connection Machine (CM2) at NASA Ames using the
skew hyperplane mapping approach.

6.3.1 CM2 SYSTEM DESCRIPTION

The CM2 has 32k 1-bit serial processors, 1024 64-bit Weitek floating point units

(FPU), 4 GBytes of memory, a clock rate of 7 MHz, and a Sun 4/490 as a front end

machine. The peak performance of the machine is 14 Gflop/s.

The Connection Machine Fortran (CMF) compiler has two execution models,

fieldwise and slicewise. The fieldwise model uses both the single bit processors and

the FPUs, the single bit processor for integer and logical operations and the FPUs for

27



floating point operations. The sllcewise model uses only the FPUs for all arithmetic

and logical operations. The implementation described in this section only uses the

slicewise model. For information on optimizing within the slicewise model see [11].

In the slicewise model, the CM2 at NASA Ames is considered a SIMD machine

with 1024 processing elements (PEs). Each PE is a vertex of a ten dimensional

hypercube with a FPU and 4 MBytes of memory. Compiler directives allow users

to specify whether an individual axis of an array as either parallel, spread across

processors, or serial, contained within a processor. The CMF compiler partitions an

array with parallel dimensions into subgrids based on the array size and the machine

size. All subgrids are the same size: the compiler pads an array as required to form

equal sized subgrids. Each subgrid is assigned to a PE. Besides requiring all subgrids

to be the same size, the size is required to be a multiple of four since the FPU has a

four stage pipeline. If the number of grid points in the parallel dimensions is not a

multiple of four times the number of FPUs, the compiler pads the array.

6.3.2 CM2 IMPLEMENTATION DETAILS

The hyperplane algorithm, Algorithm 3.4, is implemented on the CM2 using the skew

hyperplane mapping approach. The domain is partitioned by distributing the N_ and

N, 1 dimensions among processors and storing the N{ dimension in-processor. The

CMF compiler maps the parallel dimensions onto the CM array first, and then the

serial dimension is-added-on top of this mapping. This means that the domain is par-

titioned into pencils where the serial dimension of the subgrids is fixed, independent

on the mapping.

The skew hyperplane mapping approach requires the computational domain be

transformed. In this implementation, the computational domain is transformed once

at the beginning of the computation and both the RHS and LHS operate in the trans-

formed domain. The RHS computation operates on all grid points of transformed

domain simultaneously since there are no data dependencies between hyperplanes.

The LHS computation is done sequentially across hyperplanes since there are depen-

dencies between hyperplanes.

The computation of the fourth-difference dissipative terms near the computa-

tional boundaries requires special attention. For the two planes next to the bound-

aries, equations 2.8 through 2.11 are used to compute the fourth-difference dissipative

terms. All other interior planes use equation 2.7. A straightforward CM Fortran im-

plementation requires a boolean mask for every different plane type. This means

that for the _- direction four 2-D masks are needed for i = 2, 3, N_ - 2, and N_ - 1

and a 3-D mask for 4 _< i _< N¢ - 3. A total of 15 masks are needed for the three

directions. These masks are precalcnlated and used every time step. However, this

implementation has a deficiency. Since the CM2 is a SIMD machine, all processors

execute one instruction every cycle, so, operating on one plane of a 3-D array means

other planes will be unaffected, i.e., processors associated to these planes will be idle.

An alternative approach is based on the observation that the coefficients of U '_

terms in equations 2.8 through 2.11 and equation 2.? are similar. For example, the

U._+l,j,i, term has the same coefficient (-4) in the four equations that it appears. This

is also true for the coefficients of U_2j,l,, U.__l,j,k, and U/__2,j,h terms. Only U_j,k has a

28



coefficient of either 5 or 6. Based on this observation, each U '_ term can be computed

separately from the others; i.e., U_?_2j,I. is computed first for 2 _ i < Ne - 3, then

U_+zj,k is computed for 2 _< i _< Ne - 2, and so on. This implementation would

require a 3-D boolean mask for every term in every direction. A total of 15 masks

are required for the three directions. (U_,k can be computed for all planes with a

coefficient of 6 and recomputed for i = 2 and Ne - 1 with a coefficient of -1.) This

implementation is more efficient than the previous one since most processors will be
active most of the time.

A third approach for computing the dissipative terms is based on the observa-

tion that all terms of equations 2.8 through 2.11 and equation 2.7 have constant

coefficients. These coefficients can be precalculated and stored in 3-D arrays. Ar-

ray elements corresponding to the missing terms are set to zero. One 3-D array is

needed for every U" term in every direction. The coefficient arrays can be either real

or integer (since the coefficients are integers and reals are stored as 64-bit numbers,

32-bit integers can be used to save memory). Again, a total of 15 arrays are needed

for the three directions. In this approach, as in the second one, most processors will
be active most of time.

The choice between the three approaches depends on many factors including per-

formance and storage requirements. The first approach requires the least amount

of memory, especially if boolean variables are represented by single bits. However,

this approach is the least efficient one in terms of processor utilization. The three

approaches have been implemented on the CM2, and the third approach found to be

significantlyfasterthan the firstand slightlybetter than the second. With respect to

memory requirements, both integerand boolean variables,in the slicewisemodel, are

represented by 32 bits,so, the second and third approaches requirethe same amount

of memory. Since memory requirements are the same, the third method is used.

The LHS computation alsorequiresa 3-D boolean mask sincemultiple hyperplanes

are mapped to a singlerectangularplane. This mask has N_ + N,_+ N¢ - 2 planes,one

forevery hyperplane. However, conditionalstoreoperations (mask operations)on the

CM2 are not as efficientas the unconditional store operations. In fact,conditional

storesare about three times slower than unconditional stores.Therefore, it ismore

efficientto perform the LHS computation on allgrid points in every plane and only

mask out the unneeded points when computing the residuals at the end of each

triangular solve.

6.3.3 CM2 RESULTS

The results of implementing the SSOR simulated application for several domain sizes

on the CM2 are listed in Table 5. The CMF compiler release 1.1 operating in the

slicewise mode used to generate these results. An arithmetic is done in double pre-

cision (64 bit). Notice that the number of PEs is based on the 64-bit floating point

processors rather than the 1-bit serial processors. Timing, in seconds, are for a single

time step averaged over ten steps. Performance rates are based on these timings and

the number of flops computed on the Cray Y-MP, see Section 4.

Table 6 shows the subgrid size and memory requirement that the CMF compiler

uses to map the various problem sizes onto the CM2. The compiler partitions the

29



parallel dimensions at run time to generate the optimal subgrid size for the number

of processors used. Memory requirements given in the table are based on the pro-

grammer's declared variables, both local and global. Temporary variables created by

the compiler are not included. Notice that for the non-power-of-two domains the re-

quired memory depends on the number of processors since the compiler uses different

padding schemes to partition the domain into equal sized subgrids.

Results for the smallest grid, (32 x 32 x 32), show no performance improvement

when more than 256 PEs are used. This means that only a portion of the machine,

256 PEs, is utilized even when more processors are ava£1able.

The non-power-of-two grid, (102 x 102 x 102), has two implementations depending

on the shift operation used. CM Fortran has two shift functions: cshifl (circular shift)

and eoshifl (end-off shift). The cshift function shifts data in one direction by a user

specifiable distance. Data shifted oIT one end of the array is inserted at the opposite

edge. The eoshift function is similar to cshift except that values inserted are user

specifiable constants (default is zero) instead of the values shifted out. The current

implementation of shift operations favors cshift for power-of-two arrays and eoshift for

non-power-of-two arrays. Results (A) for the (102 x 102 x 102) domain, see Tables 5

and 6, are obtained by declaring all arrays as (102 x 102 x 102) and using eoshift.

Results (B) for the (102 × 102 × 102) domain are obtained by declaring arrays to

be (128 × 128 × 102) and using cshiftin most places and eoshiftwith array sections

in other places. The resultsshow that implementation (B) is more efficientthan

implementation (A) even though there are more operations.

Table 5 shows performance improvement for the power-of-two grid sizesas the

number of processorsisincreased. Results for the non-power-of-two domains are less

impressive because of the padding done by the compiler and the implementation of

shiftoperations.

Costs of the main computational parts of the SSOR simulated application are

given in Table 7. The main computational parts arc the RHS, lower triangularsolve,

and upper triangularsolve.Together, they representabout 99% of the execution time

within a time step. For the power-of-two domains, the RHS computation contributes

only 20% to 23% to the totaltime while the LHS computation contributes 76% to

79% to the totaltime. For the (102 × 102 × 102) domain, the RHS computation is

about 26% of the totaltime when using eoshifts,implementation (A), and about 35%

of the total time when using cshifts,implementation (B). For implementation (B),

eoshiftwith array sectionsare used in the RHS computation.

6.3.4 ANALYSIS OF CM2 RESULTS

The skew hyperplane mapping is very e_cient on the CM2. Since at least two grid

points in every parallel dimension are assigned to every PE, see Table 6, communica-

tion is strictly nearest neighbor. The only deficiency of the skew hyperplane mapping

is processor idling during the LHS computation. This is inherent to this scheme since

there is a d&ta dependency between hyperplanes. On average, only one third of the

processors are performing useful work for the LHS computation.

In order to estimate the communication overhead in the SSOR simulated appli-

cation, the program is run with all shift functions removed (substituted by array

30



Domain size

32 x 32 x 32

64 x 64 x 64

102 x 102 × 102

(A)

102 x 102 x 102

(B)

128 x 128 × 128

PEs Time/step (sec)
256 1.140

512 1.121

1024 1.124

256 5.226

512 3.400

1024 2.288

256 37.786

512 22.081

1024 13.353

256 29.867

512 17.009

1024 10.012

256 31.429

512 18.242

1024 10.724

Rate (Mflop/s)

42

43

43

82

125

186

47

81

134

6O

105

179

114

196

333

Table 5: Performance on the CM2

Domain size

32 x 32 x 32

64 x 64 x 64

102 x 102 x 102

(A)

102 x 102 x 102

(B)

128 x 128 x 128

PEs Subgrid size

256 2 x 2 x 32

512 2 × 2 × 32

1024 2 x 2 × 32

256 4 x 4 × 64

512 4 x 2 x 64

1024 2 x 2 x 64

256 26×2x102

512 14×2×102

1024 4×4×102

256 8×8×102

512 8x4×102

1024 4×4x102

256 8x8×128

512 8×4×128

1024 4×4×128

Memory MBytes)

14

14

14

113

113

113

576

620

709

709

709

7O9

886

886

886

Table 6: Partitioning on the CM2

31



Domain PEs RHS Lower Upper Time/step
size Time Perc Time Perc Time Perc Time

(se ) (%) (%) (sec) (%) (se )
32 x 32 × 32 256 0.245 21.5 0.442 38.8 0.437 38.3 1.140

512 0.244 21.8 0.433 38.6 0.433 38.6 1.121

1024 0.243 21.6 0.436 38.8 0.435 38.7 1.124

64 × 64 × 64 256 1.192 22.8 2.000 38.3 1.988 38.0 5.226

512 0.765 22.5 1.312 38.6 1.299 38.2 3.400

1024 0.465 20.3 0.910 39.8 0.893 39.0 2.288

102 × 102 × 102 256 10.124 26.8 13.981 37.0 13.607 36.0 37.786

(A) 512 5.808 26.3 8.248 37.4 7.960 36.0 22.081

1024 3.383 25.3 5.081 35.1 4.863 36.4 13.353

102 × 102 × 102 256 10.305 34.5 9.774 32.7 9.694 32.5 29.867

(B) 512 5.885 34.6 5.580 32.8 5.494 32.3 17.009

1024 3.480 34.8 3.266 32.6 3.236 32.3 10.012

128 x 128 x 128 256 6.214 19.8 12.295 39.1 12.064 38.4 31.429

512 3.888 21.3 6.997 38.4 6.920 37.9 18.242

1024 2.379 22.2 4.077 38.0 4.050 37.8 10.724

Table 7: Profileon the CM2

Domain

size

32 x 32 x 32

64 × 64 x 64

102 × 102 × 102

(A)

102 × 102 × 102

(a)

128 × 128 × 128

PEa Computation

Time Perc

(sec) (%)
256 0.488 42.8

256 3.102 59.4

512 1.685 49.6

1024 0.957 41.8

256 14.827 39.2

512 8.165 37.0

1024 4.839 36.2

256 18.955 63.5

512 9.991 58.7

1024 4.847 48.4

256 22.962 73.1

512 11.689 64.1

1024 6.092 56.8

Communication Time/step

Time Perc Time

(sec)(%) (sec
0.652 57.2 1.140

2.124 40.6 5.226

1.715 50.4 3.400

1.331 58.2 2.288

22.959 60.8 37.786

13.916 63.0 22.081

8.514 63.8 13.353

10.912 36.5 29.867

7.018 41.3 17.009

5.165 51.6 10.012

8.467 26.9 31.429

6.553 35.9 18.242

4.632 43.2 10.724

Table 8: Communication cost on the CM2

32



elements that are not shifted). Results are considered to be for computation only.

The difference between the computation only time and the actual time is the commu-

nication overhead. This procedure approximates the communication overhead since

the compiler may do some optimization that is prevented in the presence of shift

operations. Table 8 lists the estimated computation and communication times for

several domains on the CM2. For power-of-two domains, the communication time

depends primarily on the subgrid size. The times are relatively low for large sub-

grids, 2?% of the execution time for the (8 x 8 x 128) subgrid, and relatively high

for small subgrids, 58% for the (2 x 2 × 64) subgrid. For the non-power-of-two do-

mains, the communication time also depends on the type of shift operation. Results

show that shift operations are more expensive for non-power-of-two arrays than for
power-of-two arrays.

One conclusion drawn from these results is that performance variations for differ-

ent domain/machine configurations are largely due to the communication cost. The

computational time per grid point per processor (computed by dividing the compu-

tation cost by the subgrid size) is about the same for all cases, roughly 3 milliseconds.

This means that the falloff from ideal speedup is primarily due to communication.

Also, the communication time is significant for all domains even though the commu-

nication is only nearest neighbor.

6.4 iPSC/860 IMPLEMENTATION

In this section, four different implementations of the SSOR simulated application on

the 128 node Intel iPSC/860 located at the NAS systems division at NASA Ames are

presented. Two of the implementations are based on the wavefront algorithm, Algo-

rithm 3.3. The other two implementations are based on the hyperplane algorithm,
Algorithm 3.4.

6.4.1 iPSC/860 SYSTEM DESCRIPTION

The Intel iPSC/860 is a Multiple Instruction Multiple Data stream (MIMD) parallel

computer [9]. The machine used has 128 processor nodes. Each node is comprised of a

40 MHz Intel i860 micro-processor, 8 MBytes of memory and a link to the hypercube

communication network. Each node has a peak performance of 60 Mflop/s in 64-bit
arithmetic.

6.4.2 iPSC/860 IMPLEMENTATION DETAILS

One of the main issues to be addressed in the implementation on a MIMD computer

is the partitioning of the domain. We choose to keep the ¢ dimension in-processor

resulting in 2-D parallelism. Therefore, the sub-domains consist of pencils with the

direction being the in-processor direction. This limits the number of processors

that can be used to solve a problem of a given size since only the points in the

and _ directions can be distributed. The first partitioning strategy divides the _

plane into blocks and is referred to as 2-D partitioning. Figure 11 illustrates this

for 16 processors. Note that 1-D partitioning, where both _ and ¢ indices are held

33



in-processor, is a subset of the 2-D partitioning. In this case, the sub-domains consist

of slabs. In Section 6.4.5, other partitioning strategies are introduced.
B

i

o o- '" 4 a 2

oo-

i

>

Figure 11: Two-dimensional partitioning with 16 processors; also shown are a hyper-

plane and the direction of access of hyperlanes for lower triangular solve.

Since the RHS calculation uses a 13 point stencil, an overlap region two cells wide

between the partitions is used to facilitate the interprocessor communication. This

increases the memory requirement. Other sources of extra memory are pointers for

accessing hyperplanes, communication buffers, etc.

Two algorithms, namely the wavefront algorithm, Algorithm 3.3, and the hy-

perplane algorithm, Algorithm 3.4, have been implemented. We first discuss the

implementation of the wavefront algorithm and present results for various problem
sizes.

6.4.3 IPSC/860 WAVEFRONT IMPLEMENTATION

The wavefront algorithm is straight-forward to implement. Referring to Figure 5 and

Algorithm 3.3 and assuming a 1-D partitioning, the main steps of the algorithm are:

1. Compute the RHS. This step requires that each processor exchange two planes

of data to its neighboring processors in the _ and _ directions.

2. Carry out the lower triangular solve by stepping through N¢. For each k, form

the Jacobian matrices in A_,j,k, B_3,h, Ci,j,h and Di,j,k, compute the contribution

from Ci3,k. Then step through the mesh diagonals to compute the rest of

the contributions. Computation on a mesh diagonal requires communication

whenever the diagonal crosses a processor boundary.

34



Problem size

32 s

64 s

102 s

128 s

1

10.51

No. of processors

2 4 8 16 32 64

5.84 3.64 2.37 - -

- - 10.45 -

128

Table 9: Elapsed time/step in secs. using wavefront algorithm on the Intel iPSC/860
using 1-D partitioning.

3. Carry out the upper triangular solve. This step is identical to step 2 except

that the directions of access of N_ and of the mesh diagonals are reversed.

Since the last phase of the triangular solves using the wavefront algorithm only

possesses 1-D parallelism, a 1-D partitioning seems natural. However, both 1-D and

2-D partitionings are implemented. It would appear that the 1-D partitioning should

yield better results than the 2-D partitioning since it has better processor utilization

during the triangular solves. However, this is not so as evidenced by the results

presented in the following section.

A lower bound on the number of processors for a given domain is determined by

the memory requirements for the implementation. Approximately 35,000 grid points

fit in single processor. The grid points can be distributed in the _ and 77 directions

in any manner as long as the entire _ dimension is held in-processor. There is also

an upper bound on the number of processors since we require a minimum of 4 grid

points in each of the _ and 7/directions to facilitate the implementation. Since the

RHS stencil is 5 points wide in each direction, a minimum of 2 points should suf_ce

to retain nearest neighbor communication. However, it is easier to implement the

dissipative terms near the computational boundaries if 4 grid points are used.

6.4.4 iPSC/860 WAVEFRONT RESULTS

In this section, results are presented for the SSOR simulated application using the

wavefront algorithm on various domains. In all instances, execution time is the aver-

age time taken for a single time step of the computation in seconds.

Results from the 1-D and 2-D partitioning strategies are shown in Tables 9 and 10,

respectively. The 1-D partitioning imposes severe restrictions on the domains that

can be handled. For the domains that can be accommodated, 1-D partitioning has

worse performance than 2-D partitioning. This is surprising since the the triangular

solves possess only 1-D parallelism which should make the 1-D partitioning more
suitable.

The reason for the poor performance of the 1-D partitioning is the 2-D partition-

ing's ability to overlap the Jacobian computations from the next k plane with the

current plane. When the triangular solves are timed independently of the Jacobian

calculations, the 1-D partitioning is faster. This effect does not appear in [7] because

it is a result of the three dimensionality of the SSOR simulated application.

35



Problem size

32 s

64 s

I02 s

128 s

1 2

10.51 5.84

No. of processors

4 8 16 32 64 I 128

3.15 2.00 1.20 0.76 0.46 J
- - 8.27 4.74 2.74 1.72

- - 9.93 6.14

- - 10.56

Table 10: Elapsed time/step in secs. using wavefront algorithm on the Intel iPSC/860
using 2-D partitioning.

Problem p RHS Lower Upper
size Time Perc Time Perc Time Perc

(sec) (%)(sec) (%)(sec) (%)
32 s 64 0.087 18.0 0.198 41.0 0.198 41.0

64 s 64 0.521 18.9 1.121 40.6 1.121 40.6

128 0.310 14.0 0.730 43.3 0.730 42.1

102 s 64 1.882 18.9 4.078 40.9 4.003 40.2

128 1.131 17.1 2.796 42.4 2.670 40.5

128 s 128 1.968 17.8 4.560 41.3 4.510 40.9

Time/step

Time

(sec)

Memory

(MBytes)
0.483 28

2.763 94

1.770 130

9.963 290

6.597 376

14.750 599

Table 11: Profile with wavefront algorithm.

In Table 11, memory requirements and profile traces for the wavefront algorithm

with a 2-D partitioning are presented using 64 and 128 processors for various domains.

Times are presented for the RHS computation and the lower and upper triangular

solves which comprise more than 99% of the work involved at each time step. Over

a range of domains, the triangular solves comprise nearly 80-82% of the time.

6.4.5 iPSC/860 HYPERPLANE IMPLEMENTATION

Figure 11, which also shows a 2-D partitioning, contains a a hyperplane and the

direction in which hyperplanes are accessed for the lower triangular solve. At each

time step, the work involved consists of a lower triangular solve, an upper triangular

solve and a RHS evaluation. The two triangular solves proceed in a sequential manner,

starting at one corner of the computational domain and traverse along hyperplanes to

the diametrically opposite corner of the domain. The amount of parallelism (the size

of the hyperplane) varies as derived in Section 6.1.3. The hyperplane is defined by

using appropriate data structures. Figure 12 illustrates the effect of the mapping on

a (4 × 4 × 4) computational domain. It shows the hyperplane numbers as a function

of the position (i, j, k _) and these are obtained by projecting the hyperplanes onto the

_ plane as described in Section 6.1.1. It is seen that each hyperplane is delimited

by two diagonal wavefronts, a *leading edge' and a 'trailing edge'. It is further seen

that for a fixed k', we have no more than three different hyperplanes.

The following discussion pertains to the lower triangular solve and carries over

to upper triangular solve with obvious modifications. The grid points (i, j, k), (i -

36



1,j,k),(i,j - 1,k) and (i,j,k - 1) are mapped under the skew hyperplane mapping

onto (i,j,k'), (i- 1,j,(k- 1)'), (i,j- 1,(k- 1)') and (i,j,(k- 1)'). No communication

is required for the contribution from the grid point (i,j, k - 1) since the ¢ index is

held in-processor. Communication is needed for the contributions from (i - l, j, k)

and (i,j - 1, k) whenever a hyperplane crosses a processor boundary. The processor

receives (i- 1, j, k) from its south neighbor and (i, j - 1, k) from its west neighbor.

Thus, each processor in the hyperplane receives boundary data from its south and

west neighbors; it performs the computation, and sends boundary data, to its north

and east neighbors.

For the RHS computation, grid point (i,j, k) requires information from 12 grid

points that are distance 1 and distance 2 away along each dimension. No commu-

nication is required for the 4 grid points ¢ direction since the _ dimension is held

in-processor. Two strategies can be employed for communication in the _ direction

and in the y/direction.

In the first approach, the RHS computation follows the same path as a lower

triangular solve; i.e. each processor receives data consisting of 8 boundary lines

(constant _,( or _,C lines) from its four neighbors, computes and sends data out,

while accessing the hyperplanes sequentially.

The second approach recognizes that this communication does not have to take

place in a sequential manner. Each processor sends and receives eight planes (either

NeN¢ or N, TNc boundary planes) of data at the outset and then performs all the

computation. It would seem that the latter strategy should be more efficient than

the former, but there is only a marginal improvement in our implementation.

The reason for the slight difference has to do with the way data is accessed during

the triangular solves. The lower triangular solve begins at the bottom left front corner

A and proceeds sequentially to the diametrically opposite top right back corner B,

while the upper triangular solve follows the reverse path (see Figure 11). In the first

approach, at the completion of the lower and upper triangular solves, the processors

compute the right hand side sequentially in a manner akin to the lower triangular

solve. In the second approach, each processor communicates eight planes of data and

performs the right hand side computations as soon as it completes the triangular

solves. However, even in the second approach, there is considerable idle time since

the RHS computation is followed by the (sequential) lower triangular solve for the

next time step. Thus the only difference between the two alternative strategies is

that in one instance the processors are waiting to compute the right hand side and in

the other, they are waiting to compute the lower triangular solve and the idle times

are comparable.

6.4.6 IMPROVING LOAD BALANCE

It is clear that there is considerable load imbalance with the partitioning described

above. This can be seen by concentrating on one processor e.g. processor PlS in

Figure 11. This processor does not begin execution until the 'leading' edge reaches

it and performs the lower triangular solve until the 'trailing' edge leaves it. At this

point it begins an upper triangular solve and computes until the 'traiLing' edge leaves

it. It then computes the right hand side and idles till the 'leading' edge of the next

3?



triangular solve reaches it. This load imbalance places a limit on the speedup that

can be achieved (see Section 6.2.2).

With a view to reduce this load imbalance, we consider two other two-dimensional

partitioning strategies. Note that the ( direction is still held in-processor. The first

technique partitions the domain into diagonal strips. Load balance is enhanced by

varying the width of the strips, which are narrow near the main diagonal and wider

away from it. The schematic shown in Figure 13 illustrates this decomposition. The

main problem with this strategy is that parallelism is reduced to one dimension

and the storage requirements double in comparison with the simple 2-D partitioning

described above. As Figure 13 illustrates, these strips may be stored as logically

rectangular arrays, which is easily done by extending the domain as shown. This is

similar to the diagonal storage scheme for sparse banded matrices. The strategy ef-

fectively reduces the size of the problem that can fit in one processor and will result in

performance degradation. Using indirect addressing eliminates storage overhead, but

could introduce other inefficiencies. Therefore, we do not consider this partitioning
scheme any further.

The second partitioning strategy does not incur such a memory overhead and is

closely related to the wrapped partitioning employed by Dsoudi et al. [5] for a 2-

D problem. The basic idea here is to have multiple sub-partitions assigned to each

processor in a judicious manner to reduce the load imbalance. Whereas a standard

1-D wrapped partitioning is sufficient for their 2-D problem, a 2-D partitioning is

needed for the three-dimensional problem on hand. A simple tensor product of two

1-D wrapped partitionings does not maintain a good load balance throughout the

computation phase. The diagonal multi-partitioning idea of Naik et al.[10] shown in

Figure 14 for four processors accomplishes this, but is too restrictive. It requires that

all the available processors be assigned to each of the _ and T/dimensions, effectively
reducing the available parallelism to one dimension.

One solution is a one parameter multi-partitioning strategy which uses a 1-D

wrapping of processors along the diagonals with the number of wraps as a parameter.

Each processor is assigned a fixed number of sub-partitions equal to the number

of wraps. Performance is expected to improve with increasing number of wraps

until overwhelmed by communication costs. With the number of wraps set to 1, we

recover the simple 2-D partitioning, and with the number of wraps set equal to the

number of processors, a partitioning roughly equivalent to diagonal multi-partitioning

is obtained. An example with four processors and eight wraps is shown in Figure 15.

The arrows in Figure 15 indicate the direction in which the wrapping is performed.

6.4.7 MULTI-PARTITIONING ISSUES

There axe several issues involved in implementing the multi-partitioning technique.

Of primary concern is the communication pattern between sub-partitions. The com-

putation phase is straightforward. All arrays are distributed equally over the sub-

partitions and computations are performed by looping over the sub-partitions. Com-

munication between the sub-partitions requires careful attention. The order in which

the sub-partitions are processed is crucial to avoiding deadlocks. This issue arises

whenever multi-partioning is employed.

38



Consider a simple southward message pattern for the multi-partitioned 2-D do-

main shown in Figure 16. This message pattern occurs in both the RHS and the upper

triangular solve phases of the computation. The processor and sub-partition numbers

axe shown as tuples e.g. (0,1) means processor 0, sub-partition 1. Assume that the

sub-partitions are processed sequentially within a processor. Figure 17(a) shows the

communication pattern for 8 wraps using two processors. Each processor has 8 sub-

partitions assigned to it. In Figure 17, the column indicates the sub-partition and the

row denotes the processor. Arrows indicate the direction of communication between

the sub-partitions. In Figure l?(a), notice that (1,2) is waiting to receive a message

from (0,4), which cannot initiate a message until (0,3) receives a message from (1,4).

(1,4) cannot initiate a message unless (1,2) and (1,3) receive their messages from (0,4)
and (0,5), respectively. Hence we have a deadlock.

Deadlock occurs because sub-partitions are accessed against the flow of communi-

cation. Stated another way, dependencies between the sub-partitions create a directed

acyclic forest. When sub-partitions are processed in an order that does not honor the

dependencies, deadlock occurs. In this application, since sub-partitions are numbered

sequentially along diagonals (Figure 15), it is possible to solve this problem by simply
reversing the direction of access of the sub-partitions. The resultant communication

pattern is shown in Figure l?(b) which exhibits no deadlock. Thus, for south and

west messages, sub-partitions are accessed in decreasing order. Conversely, for north

and east messages, sub-partitions are accessed in increasing order. Such a strategy

is required even for the RHS, which has complete parallelism. A final observation

is that if the sub-partitions that communicate do not differ by more than 1 in their

sub-partition indices, the direction of access is not an issue, e.g. 4 processors with 4

wraps.

6.4.8 iPSC/860 HYPERPLANE RESULTS

Resnlts are expressed as the average time in seconds for a single time step of the com-

putation using the hyperplane algorithm with the skew hyperplane mapping for var-

ious domains. There are two implementations, with and without multi-partitioning.

There are upper bounds on the processors and the number of wraps since a minimum

of 4 grid points is required in each of the _ and _7 directions for each sub-partition.

The results from using 2-D partitioning without multi-partitioning are shown in

Table 12. Comparing with Table 10, it is seen that the wavefront algorithm with

a 2-D partitioning yields better performance, especially with increasing number of

processors. The reason for this is given in the next section which compares the

performance of the wavefront and hyperplane algorithms on the same domain.

Next, the effects of multi-partitioning on performance are examined. Table 13 and

Table 14 present timings obtained as the the number of processors and the number

of wraps are varied for (32 × 32 × 32) and (64 x 64 × 64) domains, respectively. As

expected, as the number of wraps are increased, the execution time decreases until

communication costs begin to dominate and increases thereafter. However, the trend

is not uniform. There is a bias towards square sub-partitions which consistently give

better performance, e.g. 4 processors with 4 wraps, 8 processors with 2 wraps etc.

The reason is that a square sub-partition ensures better load balance as the domain

39



Problem size

32 s

64 s

102 s

128 s

1 2

8.85 6.11

No. of processors

4 8 16 32 64 128

4.05 2.63 1.62 1.13 0.75

- - 10.86 6.49 3.84 2.54

- 13.47 8.39

- - - 14.75

Table 12: Elapsed time/step (secs.)

iPSC/860.
using the hyperplane algorithm on the Intel

Procs No. of wraps

1 2 4 8 16

1 8.85 - -

2 6.11 6.14 6.84 6.05 7.25

4 4.05 4.06 3.69 4.61 4.71

8 2.63 2.30 2.81 2.78 -

16 1.62 1.70 1.62 - -

32 1.13 1.06

64 0.75

32

8.09

Table 13: Elapsed time/step in secs. using the hyperplane algorithm with multi-

partitioning - (32 × 32 × 32) domain.

is swept along hyperplanes.

Finally, it should be noted that, although the results are only presented for the hy-

perplane algorithm, multi-partitioning should improve the performance of the wave-
front algorithm as wen.

Memory requirements and profile traces for the hyperplane algorithm using 64 and

128 processors on various domains are presented in Table 15. Times are presented

for the RHS computation and lower and upper triangular solves. Again, over a range

of domains, the two triangular solves take up nearly 85% of the time.

Procs

' 1 2

16 10.86 10.30

32 6.49 5.48

64 3.76 3.85

128 2.56 2.34

No. of wraps

4 8 16

8.45 11.26 11.72

6.45 6.05 -

3.51

Table 14: Elapsed time/step in secs. using the hyperplane algorithm with multi-

partitioning - (64 × 64 × 64) domain.

4O



Problem P RHS Lower Upper

size Time Perc Time Perc Time Perc

(sec) (_)(sec) (_)(sec) (_)
323 64 0.I00 13.3 0.322 42.9 0.322 42.9

64 s 64 0.561 14.6 1.649 42.9 1.625 42.3

128 0.356 14.0 1.100 43.3 1.070 42.1

1023 64 1.950 14.5 5.831 43.2 5.661 42.0

128 1.240 14.8 3.620 43.1 3.510 41.8

128 _ 128 2.230 15.1 6.320 42.8 6.150 41.7

Time/step

Time

(sec)
0.750

3.840

2.540

13.470

8.390

14.750

Table 15: Profile with hyperplane algorithm.

Memory

(MBytes)

25

88

121

279

361

582

8.4.9 iPSC/860 ANALYSIS

The wavefront algorithm with the 2-D partitioning offers some important advantages

over the hyperplane algorithm. First, it does not make use of the skew hyperplane

mapping and is thus easier to implement. Second, it cuts the idle time and improves

performance without increasing the memory requirements even though the granularity

is finer in the triangular solution phases. Referring to Figure 5, for a fixed k, the

wavefront algorithm computes the Jacobian matrices Aij,h, Bij, k, Cij, h and D_,£h and

stores them as 2-D arrays. Therefore each of the Jacobian matrices requires only a

storage of 25 × N_ × N n distributed over all processors. Contributions in the ¢ direction

are computed in parallel for the entire plane and then the wavefront algorithm with

2-D partitioning is used for the contributions in the _ and _/directions. The wavefront

algorithm introduces a load imbalance when 2-D partitioning is employed which can

be ameliorated by employing multi-partitioning. The important point to note is that

the load imbalance does not include the time required to form the Jacobian matrices.

The load imbalance is due to the sequential triangular solution phase of the SSOR

simulated application. When employing the hyperplane algorithm, precomputing the

Jacobian matrices is storage intensive, the Jacobian matrices need to be computed for

the three-dimensional whole domain. Each Jacobian matrix requires 25 × N_ × N, × NC

words of storage. This increase severely limits the practical problem size. However, if

storage is not a consideration, the Jacobians can be precomputed in the hyperplane

algorithm. Precomputing Jacobians with the hyperplane algorithm will be referred

to as the pc-hyperplane algorithm.

Table 16 shows the execution times and memory requirements without multi-

partitioning for the wavefront, hyperplane and pc-hyperplane algorithms for the (64 ×

64 × 64) domain. Pc-hyperplane algorithm has the best performance, but requires

about 5 times as much memory as the wavefront algorithm. The wavefront algorithm

thus offers the best compromise in terms of speed and memory required.

7 CONCLUSIONS

The SSOR simulated application has been implemented on three different parallel

architectures, an eight processor Cray Y-MP, a 32K processor Thinking Machine

41



Method Time/time step Memory (MB
wavefront

hyperplane

pc-hyperplane

2.74 94

3.76 88

2.67 400

Table 16: Comparison of wavefront, hyperplane and pc-hyperplane algorithms - (64 x
64 x 64) domain and 64 processors.

Corp. CM-2 and a 128 processor Intel iPSC/860. Of the three machines, the eight

processor Cray Y-MP has the best performance and the easiest implementation.

In all cases, the formation and solution of the left hand side along with the right
hand side calculations account for approximately 99% of the execution time within a

time step. About 75% to 86% is in the formation and solution of the left hand side.

The hyperplane algorithm is implemented on all three machines. On the Y-MP,

indirect addressing, using the gather-scatter hardware, is used to form a single vector

from a hyperplane. On the CM-2 and iPSC/860, the skew hyperplane mapping is

used to make hyperplane access more amenable. For the CM-2, the skew hyperplane

mapping works well. However, on the iPSC/860, the wavefront algorithm with a 2-D
partitioning is found to be better.

The wavefront algorithm with a 2-D partitioning on the iPSC/860 is able to

overlap computing__cobian matrices of the next k plane with computing on the

mesh diagonals of the current plane. This overlap can not be done on the CM-2.

A model is presented that predicts the hyperplane algorithm is better when the

number of processors is greater than _N.

Overall, the SSOR simulated application performed better on the paralhl ma-
chines than expected.

References

[1] O. Axelsson. A Generalized SSOR Method. BIT, 13:443-467, 1972.

[2]D. Bailey, J. Barton, T. Lasinski, and H. Simon (editors). The NAS Paral-

lel Benchmarks. Technical Report RNR-91-002, Applied Research Branch, MS

T045-1, NASA Ames Research Center, Moffett Field, CA 94035, January 1991.

[3]S. Breit, W. Ca.lmaster, W. Coney, et al. The Role of Architectural Balance

in the Implementation of the NAS Parallel Benchmarks on the BBN TC2000

Computer. In 1993 ASME Fluids Engineering Conference, Washington, June
20-24 1993. To appear.

[4] Cray Research, Inc. UNICOS Autotasking User's Guide, sn-2088 edition, 1989.

E. Dsoudi and P. Manneback. Parallel ICCG Algorithm on Distributed Memory

Architecture. In The Fifth SIAM Parallel Processing For Scientific Computing,
pages 78-83, Houston, March 25-27 1991.

42



[6]

[7]

R. Fatoohl and S. Yoon. Multitasking the INS3D-LU Code on the Cray Y-

MP. In AIAA lOth Computational Fluid Dynamics Conference, pages 619-626,
Honolulu, June 24-27 1991.

A. Greenbaum. Solving Sparse Triangular Linear Systems Using FORTRAN

with Parallel Extensions on the NYU Ultracomputer Protype. Technical Report

Ultracomputer Note 99, April 1986.

[8] R. Hockney and C. Jesshope. Parallel Computers Y2.Adam Hilger, second edition,
1988.

[9]

[10]

[11]

INTEL Corp. iPSC/12 and iPSC/860 Users's Guide, order number 311532-006
edition, June 1990.

V. Naik, N. Naik, and M. Nicoules. Implicit CFD Applications on Message

Passing Multiprocessor Systems. In Horst Simon, editor, Parallel Computational

Fluid Dynamics Implementations and Results, pages 97-125. The MIT Press,
1992.

Thinking Machines Co. CM Fortran Optimization Notes: Slicewise Model, ver-
sion 1.0 edition, March 1991.

43



s : s : 0 : ,

i , i

s : s ', s : o
..... :..... :..... • ....

s i s i s i s
..... :..... :..... :.....

• t i
1 ',s :s :s

; , i

K'm 1

e :s i s,: lo
,_---!,........: :,_---

s,:s :s :e,

.... ;w,----r .... r---:'

..... r .... • .... • .... '

2 ' 2 i S, : S

K°i2

m... I

7:7:7:7
..... i .... i .... i ....r r r

r r r
i * ,

3 : 3 : 7 : 7

r r r

3:3:3:7

_-.j

I ; ; ;4 i8 :s :8

i r .... F.... ,".... ,"....
/ 4:4:8 :s

l _ .... :..... _ .... _ ....
, i I

14 :4 :4:8

[:-i:--i-:-!:-
K'-3 K'.4

Figure 12: Skew hyperplane mapping of a (4 x 4 x 4) computational domain problem

with hyperplane numbers indicated.

...: ...... -. ....... : ......... ;,

Figure 13: Stripwise diagonal partitioning with 16 processors.

3 2 1 0

2 1 0 3

1 0 3 2

0 3 2 1

Figure 14: Diagonal multi-partitioning with 4 processors.

44



Figure 15: Wrapped multi-partitioning with 4 processorsand 8 wraps.

(o.,R (o.II (1._ (t._

i • • ¥

I I I

(I.II (o..11 (o_ 1o.7_

t I I

(o,1) to_t) (t_ (I.R

Figure 16: A simple message pattern with multi-partitioning; 2 processors and 8

wraps

l_0uact I

Pmmw 0

1 2 3 4 S 6 7 II

(,)

I 7 i S 4 3 2 1

Figure 17: (a). Message pattern exhibiting a deadlock.
no deadlock.

0:)

(b). Message pattern with

45


